Expert System Rules for Process Control with Python

Raspberry PI Zero Environment

Including Conversion of Relay Ladder Logic Introduction, Process, Simple Examples Applications for Renewable Energy Systems

Expert System Rules for Process Control with Python

Raspberry PI Including Conversion of Relay Ladder Logic Introduction, Process, Simple Examples Applications for Renewable Energy Systems

Gerald B. Sheblé, PhD, MBA

Dedicated to my trapping states: Jason, Laura, Kiyan, Annabeth

Declarations

The author and publisher have used their best efforts in ensuring the correctness of the information contained in this book. They do not assume, or hereby disclaim, any liability to any party for any loss or damage caused by errors or omissions in this book, whether such errors or omissions result from negligence, accident, or any other cause.

The Python programs which furnish the shell for the expert system rules to function are licensed only for the use of education with this text. A provisional patent has been filed for these processes.

Reference software license for commercial use and provisional patent available at: <u>www.gbsepmt.com</u>. The provisional patent application supporting the conversion of RLL to Python includes backward chaining.

Copyright © November 2020 Dr Gerald Sheblé All rights reserved. No part of this book may be reproduced or transmitted in any form or by other means without permission in writing from the author, except by a reviewer who wishes to quote brief passages in connection with a review written for insertion in a magazine, newspaper, or broadcast. Copyright permission was sought by the author for the use of the images used in this book, but where this was not possible and amendments are required, arrangements will be made at the earliest opportunity.

Table of Contents

	Preface	i
1	Introduction to Artificial Intelligence	3
1.1	Expert Systems	3
1.2	Relay Ladder Logic Control	5
1.3	Industrial Automation	6
1.4	Controllers	14
1.5	Micro Controller Unit (MCU)	15
1.6	Computer Basic Organization	18
1.6.1	Central Processing Unit (CPU)	18
1.6.2	Memory	18
1.6.3	Basic types of semiconductor memory	20
1.6.4	Peripherals	21
2	Computer Categories	22
2.1	Microcomputers	22
2.2	Mainframes	24
2.3	Supercomputers	24
2.4	Memory Hierarchy	25
2.5	Secondary Storage	25
2.5.1	Magnetic Disks	26
2.5.2	Input Devices	27
2.5.3	Output Devices	28
2.6	Computer Evolution	29
2.6.1	Electromagnetic Relay	30
2.6.2	Electronic – Vacuum Tubes	31
2.6.3	Electronic Semiconductor	32
2.6.4	Electronic Transistor	33
2.6.5	Electronic – Large Scale Integration	35
2.6.6	Electronic – Very Large-Scale Integration	36
2.6.7	Electronic – Ultra Large-Scale Integration	40

2.6.8	Electronic - System on Chip (SOC)	40
2.6.9	Computer Language Evolutions	41
2.7	Raspberry PI Zero	42
2.7.1	Power USB Micro Connection	43
2.7.2	USB On-The-Go Micro Connection	44
2.7.3	Run Button	44
2.7.4	TV Port	44
2.7.5	Status LED	44
2.7.6	WiFi and Bluetooth Antenna	45
2.7.7	Micro SD Card Slot	45
2.7.8	Camera Connector	45
2.7.9	GPIO Connectors	45
2.7.10	Mini HDMI Connector	48
2.8	Grove Base Hats	48
2.9	Grove Expansion Boards	51
2.10	Summary	51
3	How to Identify Experts to Get ESRs	53
3.1	Expert System Rules	53
3.2	Example Controlled RLL Processes	54
3.3	Delphi Technique	56
3.4	Selection of experts	57
3.4.1	Briefing the experts	57
3.4.2	Collation of estimates received from the experts	57
3.4.3	Delphi Merits	58
3.4.4	Delphi Demerits	58
3.5	Pseudocode & HIPO	58
3.5.1	Design Process	59
3.5.2	Hierarchical Input Process Output (HIPO) Format	59
3.5.3	Machine Control Terminology	60
3.5.4	Basic Guide	61

3.5.5	Pseudocode Fundamentals	62
3.5.6	Example Pseudocode Document	64
3.6	Personal Favourite Topics	66
3.7	Personal Programming Languages	67
4	Electric Energy Examples	69
4.1	Specific Examples	72
4.1.1	Cornell Hydro Plant	72
4.1.2	Sayano–Shushenskaya Russian Hydroelectric Accident	74
4.1.3	Tom Sauk Pumped Hydro Energy Storage Missouri	76
4.1.4	Natural Gas Generator	80
4.1.5	Nuclear Power Plants	83
4.1.6	Transformer Failures	84
4.2	Substation Controller	86
4.3	Assignments at Power Facility Control Center	87
5	Relay Ladder Logic Introduction & History	88
5.1	Western Union Telegraph	88
5.2	Basic Industrial Automation	91
5.3	Relay Ladder Logic Conventions	93
5.3.1	Relay Ladder Logic Execution Sequence	93
5.3.2	Relay Ladder Logic First Pass	97
5.4	Digital Logic Extensions Using Truth Tables	98
5.4.1	Logical TRUE	99
5.4.2	Logical False	99
5.4.3	Logical Identity	99
5.4.4	Logical Negation	99
5.4.5	Logical Conjunction (AND)	99
5.4.6	Logical Disjunction (OR)	100
5.4.7	Logical Implication	100
5.4.8	Logical Equality	100
5.4.9	Exclusive Disjunction	101

5.4.10	Logical NAND	101
5.4.11	Logical NOR	101
5.4.12	Internal Relay	102
5.4.13	Always-ON and Always-OFF Contacts	103
5.4.14	Adder Application	104
5.4.15	Multiplication Application	105
5.5	Digital Logic Equivalence with RLL	106
5.5.1	Application Requiring Both Hands	107
5.5.2	Application to Any Termination Switches	108
5.5.3	Combination of AND-OR and OR-AND Circuits	109
5.6	Ladder Diagrams and Rung Dependencies	110
5.6.1	Basic PLC RLL Extensions	112
5.6.2	Data Handling Instructions	119
5.6.3	Arithmetic (mathematical) Instructions	120
5.6.4	Overflow	121
5.6.5	Control Instructions	121
5.6.6	Refresh (REF)	125
5.7	Continuous Control (PID Instruction)	126
5.7.1	PID Terminology	127
5.7.2	PID Data Interface	128
5.7.3	Digital Control Structure	129
5.7.4	ESR PID controller Implementation	129
5.7.5	Timing Control Problems	131
5.7.6	Tuning PID Loops	133
5.7.7	PID Summary	135
5.8	Summary	135
6	Relay Ladder Logic Foundations	137
6.1	Basic RLL Circuit Library	137
6.1.1	Always Energized/De-Energized	137
6.1.2	Flashing Lamp	139

6.1.3	Lighting Control System Example	140
6.1.4	Disagreement Circuit	141
6.1.5	Oscillator	141
6.1.6	Holding/Sealed Contact	143
6.1.7	Majority Circuit	145
6.1.8	Push Button On Off Circuit	147
6.1.9	On Delay/Off Delay Timers	147
6.1.10	Flip-Flop	149
6.2	RLL Examples	150
6.2.1	Alarm System	150
6.2.2	Gray Code Wheel	152
6.2.3	Furnace Control	155
6.2.4	Central Water Heater	156
6.2.5	Car Wash Machine	158
6.2.6	Two Tank Filling	162
6.2.7	Two Tank Processing	163
6.2.8	Reactor Heat and Mix	166
6.2.9	Washing Machine	169
6.2.10	Conveyor Belt Count Control	174
6.2.11	Conveyor Interlock	177
6.2.12	Conveyor Ejector	178
6.3	Summary	181
7	Input and Output Considerations	182
7.1	Digital Input and Output	182
7.1.1	Mechanical Contact Bounce	183
7.1.2	High Speed Accurate Pulse Counters	184
7.2	Relay Fundamentals	186
7.2.1	Common Electromagnetic Relay Types	188
7.2.2	Pros & Cons of the Three Types	189
7.2.3	Ways to Control Electronic Relays	190

7.2.4	Hard-wiring Relays	191
7.2.5	Triggering the Relay	193
7.2.6	Validating Relay Operation	193
7.2.7	Output to Relay on Equipment	193
7.3	Analog Input	194
7.3.1	Analog Signals as Binary Numbers	195
7.3.2	A/D Converter	199
7.3.3	Analog Input Wiring	199
7.3.4	Current Analog Input Wiring	201
7.3.5	Analog Input Scaling	202
7.4	Analog Outputs	202
7.4.1	Digital to Analog Converter (DAC) Applications	202
7.4.2	Weighted Resistors and R-2R ladder network	206
7.4.3	Performance	206
7.4.4	Figures of merit	207
7.5	Pulse Width Modulation PWM output	208
7.5.1	Duty cycle	209
7.5.2	Principle	209
7.5.3	Types	211
7.5.4	Power Delivery Application	211
7.5.5	Voltage Regulation and Servos	212
7.6	Conclusion	213
8	Expert System Introduction	214
8.1	Design of Expert Systems	215
8.2	Expert Systems and Machine Learning	218
8.3	Expert System Controller Benefits	221
8.4	Some Expert System Tools	222
8.5	Some Expert System Examples	223
8.6	Intelligent Control	223
8.7	Expert Control System Architecture	224

8.8	Inference Engine Design	226
8.9	Expert System Rules with PYTHON / micro-PYTHON	228
8.9.1	Basic Python	228
8.9.2	Python Executable Pseudocode	229
8.9.3	Introduction	229
8.10	Rule-based Systems: Forward and Backward Chaining	231
9	Implementation Considerations	236
9.1	REPL Coding	236
9.2	RLL Engine	237
9.3	Process Verification	238
9.4	Simulation	239
9.4.1	Model Equations	240
9.4.2	Taylor Series Expansion	243
9.5	Process Emulation	244
9.5.1	Electric Circuit Analysis	244
Resistor \	Variables Defined	245
9.5.2	Modelling of Mechanical Systems	249
9.5.3	Rotational Mechanical System Modeling	251
9.5.4	Mechanical Systems Electrical Analogies	253
9.5.5	Hydraulic Basics	257
9.6	Operator/Human Machine Interface (HMI)	265
9.7	PLC Processor Scan	266
9.8	Implementation Summary	267
9.8.1	Display or LEDs	268
9.8.2	Input/Output (I/O pins)	268
9.8.3	Storage	268
9.8.4	Raspberry PI OS	268
9.8.5	Installation	268
9.9	Summary	268
10	Converting RLL to ESRs in PYTHON	270

10.1	Conversion Process Example	271
10.2	Additional Examples	275
10.2.1	3-Way Light Switch	276
10.2.2	Digital Logic	277
10.2.3	Gated Oscillator	279
10.2.4	Position or Speed to Grey Code	279
10.2.5	Tank Filling & Draining	281
10.2.6	Furnace Control	284
10.2.7	Hot Water & Furnace Center	286
10.2.8	Motor Control	288
11	Structured Text and State Machines	295
11.1	Structured Text	295
11.2	State Machine PLC Programming Technique	295
11.2.1	Finite State Machine	295
11.2.2	Deterministic Finite State Machine	296
11.2.3	Drawbridge Finite State Example	297
11.2.4	Input/Output pin assignments	299
11.2.5	Digital pins	299
11.2.6	Analogue input pins	299
11.2.7	Analogue output pins	299
11.2.8	Marker tags	299
11.2.9	Declaration Example	300
11.2.10	Timers	300
11.2.11	Drawbridge Example	300
11.3	Summary	304
12	Smart Renewable Energy System Integration Controls	306
12.1	System Operation	307
12.1.1	Unit Commitment (UC)	310
12.1.2	Economic Dispatch (ED)	310
12.1.3	System Modeling	311

12.1.4	Demand Framework	313
12.1.5	Demand Side Storage	313
12.1.6	Speed Governor for Supply Demand Balance	314
12.2	Supply	318
12.2.1	Solar Cell	319
12.2.2	Wind Generation	320
12.2.3	Fossil Fuel Generation Model	320
12.3	Storage	322
12.3.1	Pumped Hydro	322
12.3.2	Mass Storage	322
12.3.3	Battery Storage	327
12.3.4	Flywheels	328
12.3.5	Storage Models	330
12.4	Consumption	331
12.4.1	Combined Heat and Power Control	331
12.4.2	Electric Vehicles	332
12.4.3	Water Based Heat Pumps and Thermal Energy Storage	333
12.4.4	Demand Models	333
12.5	Summary	334
13	Hardware Configuration Examples	335
13.1	Inertia Frequency Control	335
13.2	Voltage control	337
13.3	Governor Frequency Control	339
13.4	Solar Cell Sun Detection System	341
13.5	Storage Control One Dimensional	343
13.6	Storage Control Two Dimension LED Emulation	346
13.7	Water Heat Pump Energy Storage System	350
13.8	Controlling Appliances (Time of Use)	353
13.9	DSM Control as Cost Saving or Emergency Response	354
13.10	Pumped Hydro Operation	356

13.11	Auctions and Merit Order Loading	361
13.12	Component List and Summary	364
14	Machine Learning to Generate ESRs	366
14.1	Decision Analysis with Trees	366
14.2	Decision Rules	370
14.3	OneR Algorithm	372
14.4	Sequential Covering	372
14.5	Bayesian Rule Lists (BRL)	375
14.6	Advantages	377
14.7	Disadvantages	378
14.8	Rule-Fit	379
14.9	Classification and Regression Trees (CART)	384
14.10	Genetic Algorithms	387
14.11	Summary	389

Abstract

This book reflects a current industrial interest and investment in process control systems. The use of computer systems in process control provides financial benefits. Interest in the Raspberry PI, Android, Micro:Bit, and other MCUs enable the experiments and applications from Smart Homes through Renewable Energy System Microgrids. There have been considerable efforts by system designers and users to introduce and use Expert System Environments. The standard process environments are Expert System Rule processors which are languages not generally used beyond ESRs. The presented approach shows how to use the ESR as an implementation device with Python or Micro Python. Process hardware is integrated into a complete production system using the micro python. Alternatively, Raspberry PI and Python may be used. Technical specialists (e.g., electrical, mechanical, electronics, communication, process engineers, programmers, and makers) are involved in process control. The scope of this book is to assist in the application of computer hardware and software with a standard set of packages. The culminating focus is renewable energy systems, such as micro-grids, which are the future of electric energy structure around the world.

Many of these problems are provided with solutions in Energy Control Centers (ECC) Energy Management Systems (EMS) as described in the textbook "Power Generation, Operation, and Control," 3rd edition, A. J. Wood, B. W. Wollenberg, and G. B. Sheble, Wiley, 2013, or "Computational Auction Mechanisms for Restructured Power Industry Operation (Power Electronics and Power Systems), Gerald B. Sheblé, Kluwer Academic Publishers, 1999th Edition. The first text will be referenced as PGOC in this text. The second text will be referenced as CAMs in this text. Dr Sheblé pioneered structure and market definition predicting successful industry reregulation. He has authored over 200 papers and 50 research documents. He is an Board of IEEE PES Magazine. His columns are frequently highlighted in respected trade journals for industry innovations. He has been a premier guest/contributor at over 50 specialized workshops/courses throughout Europe and North America in over 24 countries. He has recently been an expert witness on electrical accidents, deficient project management, grounding, and intellectual property rights. Dr Sheblé has been an expert witness on software engineering, software business planning, and industrial trends. Dr Sheblé's Academic and Industrial Experience includes: Quanta Technology, Commonwealth Edison, Control Data Corporation, Auburn University, Iowa State University, Portland State University, University of Porto (Portugal), INESC Porto, University of New South Wales, and MAXISYS. Dr. Sheblé graduated: MBA from The University of Iowa (Henry B. Tippie College of Business), Ph.D. Virginia Technological and State University, MSEE and BSEE from Purdue University. Dr. Sheblé was awarded IEEE Fellow for contributions to the development of Auction Methods as an alternative to power system optimization methods addressing de-regulation of electric utility industry.

